Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 11: 566000, 2020.
Article in English | MEDLINE | ID: covidwho-922794

ABSTRACT

Because of particular properties of SARS-Cov-2, such as an high infection speed, its antigenic nature, evolutionarily unknown to the human immune system, and/or a viral interference on the immune response mechanisms, this virus would determine in the subjects a delayed anomalous (slow and/or low) immune response, ineffective and, finally, self-damaging. The hypothetical pathogenetic process for covid-19 could occur in three phases: a) Viral phase, asymptomatic or weakly symptomatic, with an a-specific innate immune response; b) Immunological phase, intermediately symptomatic, with an anomalous specific immune response (delayed, slow and/or low synthesis of IgM and IgG) in antigen excess conditions, immune complex formation and complement activation with tissue damages; c) Hemo-vascular phase, severely symptomatic, where complement-mediated tissue damages would induce vascular inflammation and systemic alteration of the coagulation homeostasis. This hypothesis is well supported by the immune-histochemical and microscopic demonstration in severe patient lungs of co-localized spike viral proteins, terminal components of the activated complement system (C5b-9 membrane attack complex) and microvascular deposits of small fibrin thrombi. This picture could be aggravated by the involvement of neutrophils and macrophages, releasing additional lytic and inflammatory factors. Thus, covid-19 would arise as a simple viral infection, develop as a diffuse immune complex hypersensitivity and explode as a systemic hemo-vascular pathology. If this hypothesized process would be real, suitable therapeutic interventions might be carried out, able to interfere with or block the critical factors in the various phases.


Subject(s)
Antigen-Antibody Complex/immunology , COVID-19/therapy , SARS-CoV-2/physiology , COVID-19/immunology , Complement Activation , Humans , Immunity, Innate , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL